

Digital Radio Projects

IP400 Protocol Specification

Document Number: TBD

Revision: 0.3

Status: Preliminary

Written By: Martin C. Alcock, M. Sc, VE6VH

Table of Contents

Revision Status	 i\
Reference Documents	 i\
Intellectual Property Notice	 ٠١
Disclaimer	 ٠١
Introduction	 1
Packet Format	 2
FSK Physical layer	 2
OFDM Physical Layer	
Source and Destination Field Coding	
Flags Field	

List of Tables

Table 1 Revision status	i\
Table 2 Reference Documents	i\
Table 3 Packet Format	2
Table 4 802.15.4. PHY Header Field	3
Table 5 PHY header field for 4FSK	3
Table 6 OFDM Physical Layer	4
Table 7 Source and Destination Coding	5
Table 8 Callsign extension	5
Table 9 Callsign character coding	5
Table 10 Packet Flag Field	6
Table 11 Packet Coding	6
Table 12 Audio compression field	7
Table 13 H.264 Video Compression	7

List of Figures

No table of figures entries found.

References

- [1] gnu.org, "General Public Licence," [Online]. Available: https://www.gnu.org/licenses/gpl-3.0.en.html. [Accessed 25th February 2018].
- [2] IEEE Standards Association, "IEEE Standard for Low-Rate Wireless Networks," IEEE, IEEE SA Standards Boad, 2020.

Revision Status

Revision	Date	Description
0.1	January 7th ^h , 2025	Initial draft
0.2	January 10 th , 2025	Added extended callsigns and modified alphabet
0.3	January 12 th , 2025	Added 802 PHY fields and OFDM mode

Table 1 Revision status

Reference Documents

Author	Issue Date	Description
M. Alcock	Jan 2025	Next generation multi-mode repeater controller

Table 2 Reference Documents

Intellectual Property Notice

The hardware components and all intellectual property described herein is the exclusive property of the Alberta Digital Radio Communications Society and others ("the owners"), all rights are reserved.

The owners grant licence to any Amateur for personal or club use, on an as is and where is basis under the condition that its use is for non-commercial activities only, all other usages are strictly prohibited. Terms and conditions are governed by the GNU public licence [1].

No warranty, either express or implied or transfer of rights is granted in this licence and the owner is not liable for any outcome whatsoever arising from such usage.

Copyright © Alberta Digital Radio Communications Society, all rights reserved. Not for publication.

Disclaimer

This document is a preliminary release for a product still in development and may be subject to change in future revisions. The software contained herein may be subject to unpredictable behaviour without notice. You are advised to keep a can of RAID™ Ant, Roach and Program Bug killer handy. Spray liberally on the affected area when needed.

If any page in this document is blank, it is completely unintentional.

Introduction

The IP400 protocol is a new ad-hoc networking protocol for the amateur 400MHz band, which combines the best of its predecessors, including AX.25, AREDN, HamWan and Next Generation Packet radio. It runs at lower bit rates of 600 Kb/s 4FSK at the entry level, 2.4Mb/s can be realized using an OFDM transceiver, speed beyond that are limited only by implementation and available hardware.

The protocol is modelled on, but does not completely conform to, the IEEE 802.15.4g [2] standard for low rate smart utility wireless networks, to take advantage of built-in hardware available in several off the shelf components. The physical level is compliant, however beyond that the same is not necessarily true. Two standards can be considered, 4FSK at up to 600Kb/s, and OFDM to 2.4 Mb/s.

The network is designed to comply to different applications, including digital audio, video, telemetry, messaging and others. A standalone station can be realized inexpensively using off the shelf hardware and the software is open source to enable experimentation and encourage future development activity.

It is not only used as a replacement for existing systems but can form the backbone for linking between repeater systems, which can be analog, or employing a digital standard based on C4FM modulation such as D-Star, YSF, DMR, P25, NXDN, M17 and the like. Analog linking can be in a native PCM mode or can economize on bandwidth by utilizing compression techniques such as M17 codec2.

Video is also possible using H.264 compression, but limits are placed on frame sizes and rates, where the two are mutually exclusive. To conserve bandwidth, the high the frame rate the smaller the frame size, and vice versa.

This document discussed the protocol specification in terms of the lower layers, and also some applications at higher levels to advertise presence on the network.

Packet Format

There are three distinct layers in the packet, physical, link and network.

FSK Physical layer

The packet shall be sent at 600Kb/s, using 4FSK modulation at a baud rate of 300Ks/sec, with a max deviation of ±150KHz. Each packet will be prefixed and postfixed with a ramp up/down sequence, and contain the fields as shown in the smart utility network PHY description.

The minimum packet length is 3.8ms, the maximum 23.2ms, yielding a maximum of 263 packets per second down to 32 packets per second, depending on the frame length.

Field	802.15.4	layer 4FSK	Link Layer	Network Layer		
Ramp Up	16 ¹					
Preamble	32		Not part of Frame			
Sync	32		Not part of Frame			
PHY header	16					
Source	48					
Destination	48					
Flags	16		480 to 8456 bits	56-1053 bytes		
Ext Callsign	0-128		460 (0 6430 0)(5			
Payload	336-8184					
FEC	32			Not part of Frame		
CRC	16					
Ramp Down	32					
Frame length	2316 14108		No	t part of Frame		
Time to send	3.86ms	23.51ms				
Frames/Sec	963	69				

Table 3 Packet Format

The effective data rate at the network layer shall be from 431/kb/s to 581.5Kb/s, dependent on packet size.

At the link layer, the packet shall contain a source and destination address in excess 40 format, a packet type, payload and forward error correction field. The FEC will be ignored if the CRC matches, if not an attempt is made to correct the packet data.

The network layer removes the FEC to create a data frame from 60-1515 bytes in length. Table 3 illustrates the packet format.

¹ PA ramp time is speculative and represents a sample case of 20µsec.

The format of a frame in the physical layer shall conform to the IEEE specification for smart utility networks.

The preamble field shall contain multiples of the 16 bit sequence 0x7777, to the length of the field specified.

The sync field shall contain the value 0x7DFF74FD in hexadecimal.

The PHY header field shall contain the bits as shown in Table 4.

Туре	0	1-2	3	4	5-10 11-14 15	5
Mode	0	Reserved	FCS Type	Whitening	Frame Length	
Switch	1	Parameter	New FCS	New Mode	Checksum Parity	

Table 4 802.15.4. PHY Header Field

The fields in the header are described in

Field	Value	Interpretation		
FCC Tune	0	32 bit frame check sequence		
FCS Type	1	16 bit frame check sequence		
Whitening	1	Data whitening has been applied to payload field		
Frame Length	42-1023	Length of the link layer payload in octets		
New FCS	0/1	Same coding as FCS field		
New Mode	New Mode 0 FSK (default)			
Bits 1-2	1	OFDM		
	2	Reserved		
	3	Reserved		
Bits 3-6	-	Reserved		
Checksum	BCH(15,11) using the generator Polynomial 1 + x + x ⁴			
Parity	Sum of all b	its from 0-10, up to the New Mode field		

Table 5 PHY header field for 4FSK

OFDM Physical Layer

In the OFDM mode the symbol time shall be 120μ sec, using a nominal bandwidth of 1.094MHz and channel spacing of 1.2MHz. The DFT size shall be 128, with 104 active carriers, 8 pilot and 96 data tones. Each carrier shall be modulated using 16QAM, convolutionally coded at rate $\frac{3}{4}$. The raw data rate is 3.6Mb/s, the convolutional coding results in a user rate of

Field	В	its	OFDM Symbols		
Ramp Up	32 ²		.16		
Short Training	384		1		
Long Training	384		1		
PHY header	16				
Source	48				
Destination	48		1		
Flags	16				
Ext Callsign	256				
Payload	1	8448	1	22	
Ramp Down	32		.16		
Symbols/Frame			4.32	25.32	
Time to send			0.51ms	3.03ms	

Table 6 OFDM Physical Layer

The effective data rate at the network layer shall be from 740Kb/s to 1.53Mb/s depending on frame length.

² PA ramp time is speculative and represents a sample case of 20µsec.

Source and Destination Field Coding

The source and destination fields shall be coded using an excess-40 scheme, which can compress callsigns of up to 6 characters into four bytes, the remaining two are reserved for ports. In cases where an extension is needed, a further characters can be accommodated with additional compressed fields before the payload portion of the packet. The end is signified by an FF₁₆ in the first (and only) byte of the last field.

Byte 1	Byte 2	Byte 3	Byte 4	Byte 5	Byte 6
	Callsign in E	Por	rt Number		

Table 7 Source and Destination Coding

Byte 1	Byte 2	Byte 3	Byte 4			
Callsign extension characters 6-12 in Excess 40 format						
Callsign extension characters 13-18 in Excess 40 format						
FF ₁₆		-				

Table 8 Callsign extension

The callsign field shall conform to the code set as illustrated in Table 9.

Character	Coding	Character	Coding	Character	Coding	Character	Coding
0	0	Space	10	J	20	Т	30
1	1	Α	11	K	21	U	31
2	2	В	12	L	22	V	32
3	3	C	13	M	23	W	33
4	4	D	14	N	24	X	34
5	5	E	15	0	25	Υ	35
6	6	F	16	Р	26	Z	36
7	7	G	17	Q	27	_	37
8	8	Н	18	R	28	-	38
9	9	ı	19	S	29	@	39

Table 9 Callsign character coding

The field shall be encoded using the following formula. Unused characters shall be replaced with a space (00).

$$F(3,0) = \sum_{n=1}^{n-6} C(n) + C(n-1) \times 40$$

Where F is the field value in bytes, C is the character and n the index into the callsign field. Each callsign can be up to 6 characters. The maximum value of a legally encoded callsign field is F423FFFF. A value of all 1's (FFFFFFFF) is a broadcast address to all stations, addresses outside these limits are not used.

The port number shall be in the range of 1 to 65,535.

Flags Field

Bits	Field	Purpose
15-12	Hop Count	Repeat Hop Count
11-8	Coding	Packet Coding
7-6	Compression	Compression method used
5	Unused	
4	Source callsign extended	Source call sign has an extension
3	Destination callsign extended	Destination call sign has an extension
2	Command	Local command packet
1	Connectionless	Packet has no connection
0	Repeat	Packet can be repeated

Table 10 Packet Flag Field

The HOP count reflects the number of times a packet has been repeated, to a maximum of 15 times. This is set to zero at the packet origination, if the repeat flag is set, the packet is repeated if the hop count is less than maximum.

The packet coding is described in Table 11.

Coding	Packet content	
0000	UTF-8 Text Packet	
0001	Compressed Audio packet	
0010	H.264 Compressed Video packet	
0011	Data Packet	
0100	Ping Packet	
0101	IP encapsulated packet	
0110	AX.25 packet	
0111	Encoded DTMF Frame	
1000	DMR Frame	
1001	D-Star Frame	
1010	TIA Project 25	
1011	NXDN	
1100	M17	
1101	TBD	
1110		
1111	Local command frame	

Table 11 Packet Coding

The data compression type for an audio packet is shown in Table 12

Туре	Coding	Bit Rate	Bits/20ms
00	μLaw	64Kb/Sec	1280
01	Raw PCM-16	128 Kb/s	2560
10	M17 coded	3.6Kb/s	64
11	AMBE	9.6Kb/s	1536

Table 12 Audio compression field

The data compression type for H.264 video packets is shown in Table 13.

Туре	Image Size	Frames/Sec	Bit Rate
00	240x180	24	145152
01	320x240	24	258048
10	480x360	12	290304
11	640x480	6	258048

Table 13 H.264 Video Compression