mirror of
https://github.com/adrcs/ip400.git
synced 2025-04-18 18:13:44 +03:00
1222 lines
35 KiB
C
1222 lines
35 KiB
C
/*
|
|
stm32flash - Open Source ST STM32 flash program for *nix
|
|
Copyright 2010 Geoffrey McRae <geoff@spacevs.com>
|
|
Copyright 2012-2014 Tormod Volden <debian.tormod@gmail.com>
|
|
|
|
This program is free software; you can redistribute it and/or
|
|
modify it under the terms of the GNU General Public License
|
|
as published by the Free Software Foundation; either version 2
|
|
of the License, or (at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
|
|
#include "stm32.h"
|
|
#include "port.h"
|
|
#include "utils.h"
|
|
|
|
#define STM32_ACK 0x79
|
|
#define STM32_NACK 0x1F
|
|
#define STM32_BUSY 0x76
|
|
|
|
#define STM32_CMD_INIT 0x7F
|
|
#define STM32_CMD_GET 0x00 /* get the version and command supported */
|
|
#define STM32_CMD_GVR 0x01 /* get version and read protection status */
|
|
#define STM32_CMD_GID 0x02 /* get ID */
|
|
#define STM32_CMD_RM 0x11 /* read memory */
|
|
#define STM32_CMD_GO 0x21 /* go */
|
|
#define STM32_CMD_WM 0x31 /* write memory */
|
|
#define STM32_CMD_WM_NS 0x32 /* no-stretch write memory */
|
|
#define STM32_CMD_ER 0x43 /* erase */
|
|
#define STM32_CMD_EE 0x44 /* extended erase */
|
|
#define STM32_CMD_EE_NS 0x45 /* extended erase no-stretch */
|
|
#define STM32_CMD_WP 0x63 /* write protect */
|
|
#define STM32_CMD_WP_NS 0x64 /* write protect no-stretch */
|
|
#define STM32_CMD_UW 0x73 /* write unprotect */
|
|
#define STM32_CMD_UW_NS 0x74 /* write unprotect no-stretch */
|
|
#define STM32_CMD_RP 0x82 /* readout protect */
|
|
#define STM32_CMD_RP_NS 0x83 /* readout protect no-stretch */
|
|
#define STM32_CMD_UR 0x92 /* readout unprotect */
|
|
#define STM32_CMD_UR_NS 0x93 /* readout unprotect no-stretch */
|
|
#define STM32_CMD_CRC 0xA1 /* compute CRC */
|
|
#define STM32_CMD_ERR 0xFF /* not a valid command */
|
|
|
|
#define STM32_RESYNC_TIMEOUT 35 /* seconds */
|
|
#define STM32_MASSERASE_TIMEOUT 35 /* seconds */
|
|
#define STM32_PAGEERASE_TIMEOUT 5 /* seconds */
|
|
#define STM32_BLKWRITE_TIMEOUT 1 /* seconds */
|
|
#define STM32_WUNPROT_TIMEOUT 1 /* seconds */
|
|
#define STM32_WPROT_TIMEOUT 1 /* seconds */
|
|
#define STM32_RPROT_TIMEOUT 1 /* seconds */
|
|
|
|
#define STM32_CMD_GET_LENGTH 17 /* bytes in the reply */
|
|
|
|
struct stm32_cmd {
|
|
uint8_t get;
|
|
uint8_t gvr;
|
|
uint8_t gid;
|
|
uint8_t rm;
|
|
uint8_t go;
|
|
uint8_t wm;
|
|
uint8_t er; /* this may be extended erase */
|
|
uint8_t wp;
|
|
uint8_t uw;
|
|
uint8_t rp;
|
|
uint8_t ur;
|
|
uint8_t crc;
|
|
};
|
|
|
|
/* Reset code for ARMv7-M (Cortex-M3) and ARMv6-M (Cortex-M0)
|
|
* see ARMv7-M or ARMv6-M Architecture Reference Manual (table B3-8)
|
|
* or "The definitive guide to the ARM Cortex-M3", section 14.4.
|
|
*/
|
|
static const uint8_t stm_reset_code[] = {
|
|
0x01, 0x49, // ldr r1, [pc, #4] ; (<AIRCR_OFFSET>)
|
|
0x02, 0x4A, // ldr r2, [pc, #8] ; (<AIRCR_RESET_VALUE>)
|
|
0x0A, 0x60, // str r2, [r1, #0]
|
|
0xfe, 0xe7, // endless: b endless
|
|
0x0c, 0xed, 0x00, 0xe0, // .word 0xe000ed0c <AIRCR_OFFSET> = NVIC AIRCR register address
|
|
0x04, 0x00, 0xfa, 0x05 // .word 0x05fa0004 <AIRCR_RESET_VALUE> = VECTKEY | SYSRESETREQ
|
|
};
|
|
|
|
static const uint32_t stm_reset_code_length = sizeof(stm_reset_code);
|
|
|
|
/* RM0360, Empty check
|
|
* On STM32F070x6 and STM32F030xC devices only, internal empty check flag is
|
|
* implemented to allow easy programming of the virgin devices by the boot loader. This flag is
|
|
* used when BOOT0 pin is defining Main Flash memory as the target boot space. When the
|
|
* flag is set, the device is considered as empty and System memory (boot loader) is selected
|
|
* instead of the Main Flash as a boot space to allow user to program the Flash memory.
|
|
* This flag is updated only during Option bytes loading: it is set when the content of the
|
|
* address 0x08000 0000 is read as 0xFFFF FFFF, otherwise it is cleared. It means a power
|
|
* on or setting of OBL_LAUNCH bit in FLASH_CR register is needed to clear this flag after
|
|
* programming of a virgin device to execute user code after System reset.
|
|
*/
|
|
static const uint8_t stm_obl_launch_code[] = {
|
|
0x01, 0x49, // ldr r1, [pc, #4] ; (<FLASH_CR>)
|
|
0x02, 0x4A, // ldr r2, [pc, #8] ; (<OBL_LAUNCH>)
|
|
0x0A, 0x60, // str r2, [r1, #0]
|
|
0xfe, 0xe7, // endless: b endless
|
|
0x10, 0x20, 0x02, 0x40, // address: FLASH_CR = 40022010
|
|
0x00, 0x20, 0x00, 0x00 // value: OBL_LAUNCH = 00002000
|
|
};
|
|
|
|
static const uint32_t stm_obl_launch_code_length = sizeof(stm_obl_launch_code);
|
|
|
|
/* RM0394, Empty check
|
|
* On STM32L452 (and possibly all STM32L45xxx/46xxx) internal empty check flag is
|
|
* implemented to allow easy programming of the virgin devices by the boot loader. This flag is
|
|
* used when BOOT0 pin is defining Main Flash memory as the target boot space. When the
|
|
* flag is set, the device is considered as empty and System memory (boot loader) is selected
|
|
* instead of the Main Flash as a boot space to allow user to program the Flash memory.
|
|
* This flag is updated only during Option bytes loading: it is set when the content of the
|
|
* address 0x08000 0000 is read as 0xFFFF FFFF, otherwise it is cleared. It means a power
|
|
* on or setting of OBL_LAUNCH bit in FLASH_CR register or a toggle of PEMPTY bit in FLASH_SR
|
|
* register is needed to clear this flag after after programming of a virgin device to execute
|
|
* user code after System reset.
|
|
* In STM32L45xxx/46xxx the register FLASH_CR could be locked and a special SW sequence is
|
|
* required for unlocking it. If a previous unsuccessful unlock has happened, a reset is
|
|
* required before the unlock. Due to such complications, toggling the PEMPTY bit in FLASH_SR
|
|
* seams the most reasonable choice.
|
|
* The code below check first word in flash and flag PEMPTY. If they do not match, then it
|
|
* toggles PEMPTY. At last, it resets.
|
|
*/
|
|
|
|
static const uint8_t stm_pempty_launch_code[] = {
|
|
0x08, 0x48, // ldr r0, [pc, #32] ; (<BASE_FLASH>)
|
|
0x00, 0x68, // ldr r0, [r0, #0]
|
|
0x01, 0x30, // adds r0, #1
|
|
0x41, 0x1e, // subs r1, r0, #1
|
|
0x88, 0x41, // sbcs r0, r1
|
|
|
|
0x07, 0x49, // ldr r1, [pc, #28] ; (<FLASH_SR>)
|
|
0x07, 0x4a, // ldr r2, [pc, #28] ; (<PEMPTY_MASK>)
|
|
0x0b, 0x68, // ldr r3, [r1, #0]
|
|
0x13, 0x40, // ands r3, r2
|
|
0x5c, 0x1e, // subs r4, r3, #1
|
|
0xa3, 0x41, // sbcs r3, r4
|
|
|
|
0x98, 0x42, // cmp r0, r3
|
|
0x00, 0xd1, // bne.n skip1
|
|
|
|
0x0a, 0x60, // str r2, [r1, #0]
|
|
|
|
0x04, 0x48, // skip1: ldr r0, [pc, #16] ; (<AIRCR_OFFSET>)
|
|
0x05, 0x49, // ldr r1, [pc, #16] ; (<AIRCR_RESET_VALUE>)
|
|
0x01, 0x60, // str r1, [r0, #0]
|
|
|
|
0xfe, 0xe7, // endless: b.n endless
|
|
|
|
0x00, 0x00, 0x00, 0x08, // .word 0x08000000 <BASE_FLASH>
|
|
0x10, 0x20, 0x02, 0x40, // .word 0x40022010 <FLASH_SR>
|
|
0x00, 0x00, 0x02, 0x00, // .word 0x00020000 <PEMPTY_MASK>
|
|
0x0c, 0xed, 0x00, 0xe0, // .word 0xe000ed0c <AIRCR_OFFSET> = NVIC AIRCR register address
|
|
0x04, 0x00, 0xfa, 0x05 // .word 0x05fa0004 <AIRCR_RESET_VALUE> = VECTKEY | SYSRESETREQ
|
|
};
|
|
|
|
static const uint32_t stm_pempty_launch_code_length = sizeof(stm_pempty_launch_code);
|
|
|
|
extern const stm32_dev_t devices[];
|
|
|
|
int flash_addr_to_page_ceil(uint32_t addr);
|
|
|
|
static void stm32_warn_stretching(const char *f)
|
|
{
|
|
fprintf(stderr, "Attention !\n");
|
|
fprintf(stderr, "\tThe %s operation was possibly executed, however a driver\n", f);
|
|
fprintf(stderr, "\ttimeout might have occured while waiting for acknowledgment\n");
|
|
fprintf(stderr, "\tof finished operation.\n");
|
|
fprintf(stderr, "\tThis can be caused by your I2C controller not accepting\n");
|
|
fprintf(stderr, "\t\"clock stretching\" as required by the bootloader,\n");
|
|
fprintf(stderr, "\tor timing out too early.\n");
|
|
fprintf(stderr, "\tPlease see \"I2C.txt\" in the stm32flash source code.\n");
|
|
}
|
|
|
|
static stm32_err_t stm32_get_ack_timeout(const stm32_t *stm, time_t timeout)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
uint8_t byte;
|
|
port_err_t p_err;
|
|
time_t t0, t1;
|
|
|
|
if (!(port->flags & PORT_RETRY))
|
|
timeout = 0;
|
|
|
|
if (timeout)
|
|
time(&t0);
|
|
|
|
do {
|
|
p_err = port->read(port, &byte, 1);
|
|
if (p_err == PORT_ERR_TIMEDOUT && timeout) {
|
|
time(&t1);
|
|
if (t1 < t0 + timeout)
|
|
continue;
|
|
}
|
|
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Failed to read ACK byte\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
if (byte == STM32_ACK)
|
|
return STM32_ERR_OK;
|
|
if (byte == STM32_NACK)
|
|
return STM32_ERR_NACK;
|
|
if (byte != STM32_BUSY) {
|
|
fprintf(stderr, "Got byte 0x%02x instead of ACK\n",
|
|
byte);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
} while (1);
|
|
}
|
|
|
|
static stm32_err_t stm32_get_ack(const stm32_t *stm)
|
|
{
|
|
return stm32_get_ack_timeout(stm, 0);
|
|
}
|
|
|
|
static stm32_err_t stm32_send_command_timeout(const stm32_t *stm,
|
|
const uint8_t cmd,
|
|
time_t timeout)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
port_err_t p_err;
|
|
uint8_t buf[2];
|
|
|
|
buf[0] = cmd;
|
|
buf[1] = cmd ^ 0xFF;
|
|
p_err = port->write(port, buf, 2);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Failed to send command\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
s_err = stm32_get_ack_timeout(stm, timeout);
|
|
if (s_err == STM32_ERR_OK)
|
|
return STM32_ERR_OK;
|
|
if (s_err == STM32_ERR_NACK)
|
|
fprintf(stderr, "Got NACK from device on command 0x%02x\n", cmd);
|
|
else
|
|
fprintf(stderr, "Unexpected reply from device on command 0x%02x\n", cmd);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
static stm32_err_t stm32_send_command(const stm32_t *stm, const uint8_t cmd)
|
|
{
|
|
return stm32_send_command_timeout(stm, cmd, 0);
|
|
}
|
|
|
|
/* if we have lost sync, send a wrong command and expect a NACK */
|
|
static stm32_err_t stm32_resync(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
port_err_t p_err;
|
|
uint8_t buf[2], ack;
|
|
time_t t0, t1;
|
|
|
|
time(&t0);
|
|
t1 = t0;
|
|
|
|
buf[0] = STM32_CMD_ERR;
|
|
buf[1] = STM32_CMD_ERR ^ 0xFF;
|
|
while (t1 < t0 + STM32_RESYNC_TIMEOUT) {
|
|
p_err = port->write(port, buf, 2);
|
|
if (p_err != PORT_ERR_OK) {
|
|
usleep(500000);
|
|
time(&t1);
|
|
continue;
|
|
}
|
|
p_err = port->read(port, &ack, 1);
|
|
if (p_err != PORT_ERR_OK) {
|
|
time(&t1);
|
|
continue;
|
|
}
|
|
if (ack == STM32_NACK)
|
|
return STM32_ERR_OK;
|
|
time(&t1);
|
|
}
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* some command receive reply frame with variable length, and length is
|
|
* embedded in reply frame itself.
|
|
* We can guess the length, but if we guess wrong the protocol gets out
|
|
* of sync.
|
|
* Use resync for frame oriented interfaces (e.g. I2C) and byte-by-byte
|
|
* read for byte oriented interfaces (e.g. UART).
|
|
*
|
|
* to run safely, data buffer should be allocated for 256+1 bytes
|
|
*
|
|
* len is value of the first byte in the frame.
|
|
*/
|
|
static stm32_err_t stm32_guess_len_cmd(const stm32_t *stm, uint8_t cmd,
|
|
uint8_t *data, unsigned int len)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
port_err_t p_err;
|
|
|
|
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
if (port->flags & PORT_BYTE) {
|
|
/* interface is UART-like */
|
|
p_err = port->read(port, data, 1);
|
|
if (p_err != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
len = data[0];
|
|
p_err = port->read(port, data + 1, len + 1);
|
|
if (p_err != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
p_err = port->read(port, data, len + 2);
|
|
if (p_err == PORT_ERR_OK && len == data[0])
|
|
return STM32_ERR_OK;
|
|
if (p_err != PORT_ERR_OK) {
|
|
/* restart with only one byte */
|
|
if (stm32_resync(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
p_err = port->read(port, data, 1);
|
|
if (p_err != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
fprintf(stderr, "Re sync (len = %d)\n", data[0]);
|
|
if (stm32_resync(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
len = data[0];
|
|
if (stm32_send_command(stm, cmd) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
p_err = port->read(port, data, len + 2);
|
|
if (p_err != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
/*
|
|
* Some interface, e.g. UART, requires a specific init sequence to let STM32
|
|
* autodetect the interface speed.
|
|
* The sequence is only required one time after reset.
|
|
* stm32flash has command line flag "-c" to prevent sending the init sequence
|
|
* in case it was already sent before.
|
|
* User can easily forget adding "-c". In this case the bootloader would
|
|
* interpret the init sequence as part of a command message, then waiting for
|
|
* the rest of the message blocking the interface.
|
|
* This function sends the init sequence and, in case of timeout, recovers
|
|
* the interface.
|
|
*/
|
|
static stm32_err_t stm32_send_init_seq(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
port_err_t p_err;
|
|
uint8_t byte, cmd = STM32_CMD_INIT;
|
|
|
|
p_err = port->write(port, &cmd, 1);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Failed to send init to device\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
p_err = port->read(port, &byte, 1);
|
|
if (p_err == PORT_ERR_OK && byte == STM32_ACK)
|
|
return STM32_ERR_OK;
|
|
if (p_err == PORT_ERR_OK && byte == STM32_NACK) {
|
|
/* We could get error later, but let's continue, for now. */
|
|
fprintf(stderr,
|
|
"Warning: the interface was not closed properly.\n");
|
|
return STM32_ERR_OK;
|
|
}
|
|
if (p_err != PORT_ERR_TIMEDOUT) {
|
|
fprintf(stderr, "Failed to init device.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/*
|
|
* Check if previous STM32_CMD_INIT was taken as first byte
|
|
* of a command. Send a new byte, we should get back a NACK.
|
|
*/
|
|
p_err = port->write(port, &cmd, 1);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Failed to resend init to device\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
p_err = port->read(port, &byte, 1);
|
|
if (p_err == PORT_ERR_OK && byte == STM32_NACK)
|
|
return STM32_ERR_OK;
|
|
if (p_err == PORT_ERR_TIMEDOUT) {
|
|
fprintf(stderr, "Failed to init device, timeout.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
fprintf(stderr, "Failed to init device after retry.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/* find newer command by higher code */
|
|
#define newer(prev, a) (((prev) == STM32_CMD_ERR) \
|
|
? (a) \
|
|
: (((prev) > (a)) ? (prev) : (a)))
|
|
|
|
stm32_t *stm32_init(struct port_interface *port, const char init)
|
|
{
|
|
uint8_t len, val, buf[257];
|
|
stm32_t *stm;
|
|
int i, new_cmds;
|
|
|
|
stm = calloc(sizeof(stm32_t), 1);
|
|
stm->cmd = malloc(sizeof(stm32_cmd_t));
|
|
memset(stm->cmd, STM32_CMD_ERR, sizeof(stm32_cmd_t));
|
|
stm->port = port;
|
|
|
|
if ((port->flags & PORT_CMD_INIT) && init)
|
|
if (stm32_send_init_seq(stm) != STM32_ERR_OK)
|
|
return NULL;
|
|
|
|
/* get the version and read protection status */
|
|
if (stm32_send_command(stm, STM32_CMD_GVR) != STM32_ERR_OK) {
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
|
|
/* From AN, only UART bootloader returns 3 bytes */
|
|
len = (port->flags & PORT_GVR_ETX) ? 3 : 1;
|
|
if (port->read(port, buf, len) != PORT_ERR_OK)
|
|
return NULL;
|
|
|
|
/* STM32L412xx/422xx bootloader V13.1 sends an extra ACK after init */
|
|
if ((port->flags & PORT_GVR_ETX) && buf[0] == STM32_ACK && buf[1] == 0x31) {
|
|
buf[0] = buf[1];
|
|
buf[1] = buf[2];
|
|
port->read(port, &buf[2], 1);
|
|
}
|
|
|
|
stm->version = buf[0];
|
|
stm->option1 = (port->flags & PORT_GVR_ETX) ? buf[1] : 0;
|
|
stm->option2 = (port->flags & PORT_GVR_ETX) ? buf[2] : 0;
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK) {
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
|
|
/* get the bootloader information */
|
|
len = STM32_CMD_GET_LENGTH;
|
|
if (port->cmd_get_reply)
|
|
for (i = 0; port->cmd_get_reply[i].length; i++)
|
|
if (stm->version == port->cmd_get_reply[i].version) {
|
|
len = port->cmd_get_reply[i].length;
|
|
break;
|
|
}
|
|
if (stm32_guess_len_cmd(stm, STM32_CMD_GET, buf, len) != STM32_ERR_OK)
|
|
return NULL;
|
|
len = buf[0] + 1;
|
|
stm->bl_version = buf[1];
|
|
new_cmds = 0;
|
|
for (i = 1; i < len; i++) {
|
|
val = buf[i + 1];
|
|
switch (val) {
|
|
case STM32_CMD_GET:
|
|
stm->cmd->get = val; break;
|
|
case STM32_CMD_GVR:
|
|
stm->cmd->gvr = val; break;
|
|
case STM32_CMD_GID:
|
|
stm->cmd->gid = val; break;
|
|
case STM32_CMD_RM:
|
|
stm->cmd->rm = val; break;
|
|
case STM32_CMD_GO:
|
|
stm->cmd->go = val; break;
|
|
case STM32_CMD_WM:
|
|
case STM32_CMD_WM_NS:
|
|
stm->cmd->wm = newer(stm->cmd->wm, val);
|
|
break;
|
|
case STM32_CMD_ER:
|
|
case STM32_CMD_EE:
|
|
case STM32_CMD_EE_NS:
|
|
stm->cmd->er = newer(stm->cmd->er, val);
|
|
break;
|
|
case STM32_CMD_WP:
|
|
case STM32_CMD_WP_NS:
|
|
stm->cmd->wp = newer(stm->cmd->wp, val);
|
|
break;
|
|
case STM32_CMD_UW:
|
|
case STM32_CMD_UW_NS:
|
|
stm->cmd->uw = newer(stm->cmd->uw, val);
|
|
break;
|
|
case STM32_CMD_RP:
|
|
case STM32_CMD_RP_NS:
|
|
stm->cmd->rp = newer(stm->cmd->rp, val);
|
|
break;
|
|
case STM32_CMD_UR:
|
|
case STM32_CMD_UR_NS:
|
|
stm->cmd->ur = newer(stm->cmd->ur, val);
|
|
break;
|
|
case STM32_CMD_CRC:
|
|
stm->cmd->crc = newer(stm->cmd->crc, val);
|
|
break;
|
|
default:
|
|
if (new_cmds++ == 0)
|
|
fprintf(stderr,
|
|
"GET returns unknown commands (0x%2x",
|
|
val);
|
|
else
|
|
fprintf(stderr, ", 0x%2x", val);
|
|
}
|
|
}
|
|
if (new_cmds)
|
|
fprintf(stderr, ")\n");
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK) {
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
|
|
if (stm->cmd->get == STM32_CMD_ERR
|
|
|| stm->cmd->gvr == STM32_CMD_ERR
|
|
|| stm->cmd->gid == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: bootloader did not returned correct information from GET command\n");
|
|
return NULL;
|
|
}
|
|
|
|
/* get the device ID */
|
|
if (stm32_guess_len_cmd(stm, stm->cmd->gid, buf, 1) != STM32_ERR_OK) {
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
len = buf[0] + 1;
|
|
if (len < 2) {
|
|
stm32_close(stm);
|
|
fprintf(stderr, "Only %d bytes sent in the PID, unknown/unsupported device\n", len);
|
|
return NULL;
|
|
}
|
|
stm->pid = (buf[1] << 8) | buf[2];
|
|
if (len > 2) {
|
|
fprintf(stderr, "This bootloader returns %d extra bytes in PID:", len);
|
|
for (i = 2; i <= len ; i++)
|
|
fprintf(stderr, " %02x", buf[i]);
|
|
fprintf(stderr, "\n");
|
|
}
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK) {
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
|
|
stm->dev = devices;
|
|
while (stm->dev->id != 0x00 && stm->dev->id != stm->pid)
|
|
++stm->dev;
|
|
|
|
if (!stm->dev->id) {
|
|
fprintf(stderr, "Unknown/unsupported device (Device ID: 0x%03x)\n", stm->pid);
|
|
stm32_close(stm);
|
|
return NULL;
|
|
}
|
|
|
|
return stm;
|
|
}
|
|
|
|
void stm32_close(stm32_t *stm)
|
|
{
|
|
if (stm)
|
|
free(stm->cmd);
|
|
free(stm);
|
|
}
|
|
|
|
stm32_err_t stm32_read_memory(const stm32_t *stm, uint32_t address,
|
|
uint8_t data[], unsigned int len)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
uint8_t buf[5];
|
|
|
|
if (!len)
|
|
return STM32_ERR_OK;
|
|
|
|
if (len > 256) {
|
|
fprintf(stderr, "Error: READ length limit at 256 bytes\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
if (stm->cmd->rm == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: READ command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->rm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[0] = address >> 24;
|
|
buf[1] = (address >> 16) & 0xFF;
|
|
buf[2] = (address >> 8) & 0xFF;
|
|
buf[3] = address & 0xFF;
|
|
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
|
|
if (port->write(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (stm32_send_command(stm, len - 1) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (port->read(port, data, len) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_write_memory(const stm32_t *stm, uint32_t address,
|
|
const uint8_t data[], unsigned int len)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
uint8_t cs, buf[256 + 2];
|
|
unsigned int i, aligned_len;
|
|
stm32_err_t s_err;
|
|
|
|
if (!len)
|
|
return STM32_ERR_OK;
|
|
|
|
if (len > 256) {
|
|
fprintf(stderr, "Error: READ length limit at 256 bytes\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/* must be 32bit aligned */
|
|
if (address & 0x3) {
|
|
fprintf(stderr, "Error: WRITE address must be 4 byte aligned\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
if (stm->cmd->wm == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: WRITE command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
/* send the address and checksum */
|
|
if (stm32_send_command(stm, stm->cmd->wm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[0] = address >> 24;
|
|
buf[1] = (address >> 16) & 0xFF;
|
|
buf[2] = (address >> 8) & 0xFF;
|
|
buf[3] = address & 0xFF;
|
|
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
|
|
if (port->write(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
aligned_len = (len + 3) & ~3;
|
|
cs = aligned_len - 1;
|
|
buf[0] = aligned_len - 1;
|
|
for (i = 0; i < len; i++) {
|
|
cs ^= data[i];
|
|
buf[i + 1] = data[i];
|
|
}
|
|
/* padding data */
|
|
for (i = len; i < aligned_len; i++) {
|
|
cs ^= 0xFF;
|
|
buf[i + 1] = 0xFF;
|
|
}
|
|
buf[aligned_len + 1] = cs;
|
|
if (port->write(port, buf, aligned_len + 2) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
s_err = stm32_get_ack_timeout(stm, STM32_BLKWRITE_TIMEOUT);
|
|
if (s_err != STM32_ERR_OK) {
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->wm != STM32_CMD_WM_NS)
|
|
stm32_warn_stretching("write");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_wunprot_memory(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
|
|
if (stm->cmd->uw == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: WRITE UNPROTECT command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->uw) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
s_err = stm32_get_ack_timeout(stm, STM32_WUNPROT_TIMEOUT);
|
|
if (s_err == STM32_ERR_NACK) {
|
|
fprintf(stderr, "Error: Failed to WRITE UNPROTECT\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
if (s_err != STM32_ERR_OK) {
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->uw != STM32_CMD_UW_NS)
|
|
stm32_warn_stretching("WRITE UNPROTECT");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_wprot_memory(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
|
|
if (stm->cmd->wp == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: WRITE PROTECT command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->wp) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
s_err = stm32_get_ack_timeout(stm, STM32_WPROT_TIMEOUT);
|
|
if (s_err == STM32_ERR_NACK) {
|
|
fprintf(stderr, "Error: Failed to WRITE PROTECT\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
if (s_err != STM32_ERR_OK) {
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->wp != STM32_CMD_WP_NS)
|
|
stm32_warn_stretching("WRITE PROTECT");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_runprot_memory(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
|
|
if (stm->cmd->ur == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: READOUT UNPROTECT command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->ur) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
s_err = stm32_get_ack_timeout(stm, STM32_MASSERASE_TIMEOUT);
|
|
if (s_err == STM32_ERR_NACK) {
|
|
fprintf(stderr, "Error: Failed to READOUT UNPROTECT\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
if (s_err != STM32_ERR_OK) {
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->ur != STM32_CMD_UR_NS)
|
|
stm32_warn_stretching("READOUT UNPROTECT");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_readprot_memory(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
|
|
if (stm->cmd->rp == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: READOUT PROTECT command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->rp) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
s_err = stm32_get_ack_timeout(stm, STM32_RPROT_TIMEOUT);
|
|
if (s_err == STM32_ERR_NACK) {
|
|
fprintf(stderr, "Error: Failed to READOUT PROTECT\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
if (s_err != STM32_ERR_OK) {
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->rp != STM32_CMD_RP_NS)
|
|
stm32_warn_stretching("READOUT PROTECT");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
static stm32_err_t stm32_mass_erase(const stm32_t *stm)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
uint8_t buf[3];
|
|
|
|
if (stm32_send_command(stm, stm->cmd->er) != STM32_ERR_OK) {
|
|
fprintf(stderr, "Can't initiate chip mass erase!\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/* regular erase (0x43) */
|
|
if (stm->cmd->er == STM32_CMD_ER) {
|
|
s_err = stm32_send_command_timeout(stm, 0xFF, STM32_MASSERASE_TIMEOUT);
|
|
if (s_err != STM32_ERR_OK) {
|
|
if (port->flags & PORT_STRETCH_W)
|
|
stm32_warn_stretching("mass erase");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
/* extended erase (0x44 or 0x45) */
|
|
buf[0] = 0xFF; /* 0xFFFF the magic number for mass erase */
|
|
buf[1] = 0xFF;
|
|
buf[2] = 0x00; /* checksum */
|
|
if (port->write(port, buf, 3) != PORT_ERR_OK) {
|
|
fprintf(stderr, "Mass erase error.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
s_err = stm32_get_ack_timeout(stm, STM32_MASSERASE_TIMEOUT);
|
|
if (s_err != STM32_ERR_OK) {
|
|
fprintf(stderr, "Mass erase failed. Try specifying the number of pages to be erased.\n");
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->er != STM32_CMD_EE_NS)
|
|
stm32_warn_stretching("mass erase");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
static stm32_err_t stm32_pages_erase(const stm32_t *stm, uint32_t spage, uint32_t pages)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
stm32_err_t s_err;
|
|
port_err_t p_err;
|
|
uint32_t pg_num;
|
|
uint8_t pg_byte;
|
|
uint8_t cs = 0;
|
|
uint8_t *buf;
|
|
int i = 0;
|
|
|
|
/* The erase command reported by the bootloader is either 0x43, 0x44 or 0x45 */
|
|
/* 0x44 is Extended Erase, a 2 byte based protocol and needs to be handled differently. */
|
|
/* 0x45 is clock no-stretching version of Extended Erase for I2C port. */
|
|
if (stm32_send_command(stm, stm->cmd->er) != STM32_ERR_OK) {
|
|
fprintf(stderr, "Can't initiate chip page erase!\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
/* regular erase (0x43) */
|
|
if (stm->cmd->er == STM32_CMD_ER) {
|
|
buf = malloc(1 + pages + 1);
|
|
if (!buf)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[i++] = pages - 1;
|
|
cs ^= (pages-1);
|
|
/* For I2C send a checksum after the number of pages (AN4221) */
|
|
if (port->flags & PORT_NPAG_CSUM) {
|
|
buf[i++] = cs;
|
|
p_err = port->write(port, buf, i);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Erase failed sending number of pages.");
|
|
free(buf);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
s_err = stm32_get_ack(stm);
|
|
if (s_err != STM32_ERR_OK) {
|
|
fprintf(stderr, "Erase failed, no ack after number of pages.");
|
|
free(buf);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
cs = 0;
|
|
i = 0;
|
|
}
|
|
|
|
for (pg_num = spage; pg_num < (pages + spage); pg_num++) {
|
|
buf[i++] = pg_num;
|
|
cs ^= pg_num;
|
|
}
|
|
buf[i++] = cs;
|
|
p_err = port->write(port, buf, i);
|
|
free(buf);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Erase failed sending list of pages.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
s_err = stm32_get_ack_timeout(stm, pages * STM32_PAGEERASE_TIMEOUT);
|
|
if (s_err != STM32_ERR_OK) {
|
|
fprintf(stderr, "Erase failed.\n");
|
|
if (port->flags & PORT_STRETCH_W)
|
|
stm32_warn_stretching("erase");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
/* extended erase (0x44 or 0x45) */
|
|
buf = malloc(2 + 2 * pages + 1);
|
|
if (!buf)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
/* Number of pages to be erased - 1, two bytes, MSB first */
|
|
pg_byte = (pages - 1) >> 8;
|
|
buf[i++] = pg_byte;
|
|
cs ^= pg_byte;
|
|
pg_byte = (pages - 1) & 0xFF;
|
|
buf[i++] = pg_byte;
|
|
cs ^= pg_byte;
|
|
|
|
if (port->flags & PORT_NPAG_CSUM) {
|
|
buf[i++] = cs;
|
|
p_err = port->write(port, buf, i);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Extended erase failed sending number of pages.");
|
|
free(buf);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
s_err = stm32_get_ack(stm);
|
|
if (s_err != STM32_ERR_OK) {
|
|
fprintf(stderr, "Extended erase failed, no ack after number of pages.");
|
|
free(buf);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
cs = 0;
|
|
i = 0;
|
|
}
|
|
|
|
for (pg_num = spage; pg_num < spage + pages; pg_num++) {
|
|
pg_byte = pg_num >> 8;
|
|
cs ^= pg_byte;
|
|
buf[i++] = pg_byte;
|
|
pg_byte = pg_num & 0xFF;
|
|
cs ^= pg_byte;
|
|
buf[i++] = pg_byte;
|
|
}
|
|
buf[i++] = cs;
|
|
p_err = port->write(port, buf, i);
|
|
free(buf);
|
|
if (p_err != PORT_ERR_OK) {
|
|
fprintf(stderr, "Extended erase failed sending list of pages.\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
s_err = stm32_get_ack_timeout(stm, pages * STM32_PAGEERASE_TIMEOUT);
|
|
if (s_err != STM32_ERR_OK) {
|
|
fprintf(stderr, "Extended erase failed. Check the maximum pages your device supports.\n");
|
|
if ((port->flags & PORT_STRETCH_W)
|
|
&& stm->cmd->er != STM32_CMD_EE_NS)
|
|
stm32_warn_stretching("erase");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_erase_memory(const stm32_t *stm, uint32_t spage, uint32_t pages)
|
|
{
|
|
uint32_t n;
|
|
stm32_err_t s_err;
|
|
|
|
if (!pages || spage > STM32_MAX_PAGES ||
|
|
((pages != STM32_MASS_ERASE) && ((spage + pages) > STM32_MAX_PAGES)))
|
|
return STM32_ERR_OK;
|
|
|
|
if (stm->cmd->er == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: ERASE command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (pages == STM32_MASS_ERASE) {
|
|
/*
|
|
* Not all chips support mass erase.
|
|
* Mass erase can be obtained executing a "readout protect"
|
|
* followed by "readout un-protect". This method is not
|
|
* suggested because can hang the target if a debug SWD/JTAG
|
|
* is connected. When the target enters in "readout
|
|
* protection" mode it will consider the debug connection as
|
|
* a tentative of intrusion and will hang.
|
|
* Erasing the flash page-by-page is the safer way to go.
|
|
*/
|
|
if (!(stm->dev->flags & F_NO_ME))
|
|
return stm32_mass_erase(stm);
|
|
|
|
pages = flash_addr_to_page_ceil(stm->dev->fl_end);
|
|
}
|
|
|
|
/*
|
|
* Some device, like STM32L152, cannot erase more than 512 pages in
|
|
* one command, even 511 for STM32L082. Split the call.
|
|
*/
|
|
while (pages) {
|
|
n = (pages <= 511) ? pages : 511;
|
|
s_err = stm32_pages_erase(stm, spage, n);
|
|
if (s_err != STM32_ERR_OK)
|
|
return s_err;
|
|
spage += n;
|
|
pages -= n;
|
|
}
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
static stm32_err_t stm32_run_raw_code(const stm32_t *stm,
|
|
uint32_t target_address,
|
|
const uint8_t *code, uint32_t code_size)
|
|
{
|
|
uint32_t stack_le = le_u32(0x20002000);
|
|
uint32_t code_address_le = le_u32(target_address + 8 + 1); // thumb mode address (!)
|
|
uint32_t length = code_size + 8;
|
|
uint8_t *mem, *pos;
|
|
uint32_t address, w;
|
|
|
|
/* Must be 32-bit aligned */
|
|
if (target_address & 0x3) {
|
|
fprintf(stderr, "Error: code address must be 4 byte aligned\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
mem = malloc(length);
|
|
if (!mem)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
memcpy(mem, &stack_le, sizeof(uint32_t));
|
|
memcpy(mem + 4, &code_address_le, sizeof(uint32_t));
|
|
memcpy(mem + 8, code, code_size);
|
|
|
|
pos = mem;
|
|
address = target_address;
|
|
while (length > 0) {
|
|
w = length > 256 ? 256 : length;
|
|
if (stm32_write_memory(stm, address, pos, w) != STM32_ERR_OK) {
|
|
free(mem);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
address += w;
|
|
pos += w;
|
|
length -= w;
|
|
}
|
|
|
|
free(mem);
|
|
return stm32_go(stm, target_address);
|
|
}
|
|
|
|
stm32_err_t stm32_go(const stm32_t *stm, uint32_t address)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
uint8_t buf[5];
|
|
|
|
if (stm->cmd->go == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: GO command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->go) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[0] = address >> 24;
|
|
buf[1] = (address >> 16) & 0xFF;
|
|
buf[2] = (address >> 8) & 0xFF;
|
|
buf[3] = address & 0xFF;
|
|
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
|
|
if (port->write(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
stm32_err_t stm32_reset_device(const stm32_t *stm)
|
|
{
|
|
uint32_t target_address = stm->dev->ram_start;
|
|
|
|
if (stm->dev->flags & F_OBLL) {
|
|
/* set the OBL_LAUNCH bit to reset device (see RM0360, 2.5) */
|
|
return stm32_run_raw_code(stm, target_address, stm_obl_launch_code, stm_obl_launch_code_length);
|
|
} else if (stm->dev->flags & F_PEMPTY) {
|
|
/* clear the PEMPTY bit to reset the device (see RM0394) */
|
|
return stm32_run_raw_code(stm, target_address, stm_pempty_launch_code, stm_pempty_launch_code_length);
|
|
} else {
|
|
return stm32_run_raw_code(stm, target_address, stm_reset_code, stm_reset_code_length);
|
|
}
|
|
}
|
|
|
|
stm32_err_t stm32_crc_memory(const stm32_t *stm, uint32_t address,
|
|
uint32_t length, uint32_t *crc)
|
|
{
|
|
struct port_interface *port = stm->port;
|
|
uint8_t buf[5];
|
|
|
|
if ((address & 0x3) || (length & 0x3)) {
|
|
fprintf(stderr, "Start and end addresses must be 4 byte aligned\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
if (stm->cmd->crc == STM32_CMD_ERR) {
|
|
fprintf(stderr, "Error: CRC command not implemented in bootloader.\n");
|
|
return STM32_ERR_NO_CMD;
|
|
}
|
|
|
|
if (stm32_send_command(stm, stm->cmd->crc) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[0] = address >> 24;
|
|
buf[1] = (address >> 16) & 0xFF;
|
|
buf[2] = (address >> 8) & 0xFF;
|
|
buf[3] = address & 0xFF;
|
|
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
|
|
if (port->write(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
buf[0] = length >> 24;
|
|
buf[1] = (length >> 16) & 0xFF;
|
|
buf[2] = (length >> 8) & 0xFF;
|
|
buf[3] = length & 0xFF;
|
|
buf[4] = buf[0] ^ buf[1] ^ buf[2] ^ buf[3];
|
|
if (port->write(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (stm32_get_ack(stm) != STM32_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (port->read(port, buf, 5) != PORT_ERR_OK)
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
if (buf[4] != (buf[0] ^ buf[1] ^ buf[2] ^ buf[3]))
|
|
return STM32_ERR_UNKNOWN;
|
|
|
|
*crc = (buf[0] << 24) | (buf[1] << 16) | (buf[2] << 8) | buf[3];
|
|
return STM32_ERR_OK;
|
|
}
|
|
|
|
/*
|
|
* CRC computed by STM32 is similar to the standard crc32_be()
|
|
* implemented, for example, in Linux kernel in ./lib/crc32.c
|
|
* But STM32 computes it on units of 32 bits word and swaps the
|
|
* bytes of the word before the computation.
|
|
* Due to byte swap, I cannot use any CRC available in existing
|
|
* libraries, so here is a simple not optimized implementation.
|
|
*/
|
|
#define CRCPOLY_BE 0x04c11db7
|
|
#define CRC_MSBMASK 0x80000000
|
|
#define CRC_INIT_VALUE 0xFFFFFFFF
|
|
uint32_t stm32_sw_crc(uint32_t crc, uint8_t *buf, unsigned int len)
|
|
{
|
|
int i;
|
|
uint32_t data;
|
|
|
|
if (len & 0x3) {
|
|
fprintf(stderr, "Buffer length must be multiple of 4 bytes\n");
|
|
return 0;
|
|
}
|
|
|
|
while (len) {
|
|
data = *buf++;
|
|
data |= *buf++ << 8;
|
|
data |= *buf++ << 16;
|
|
data |= *buf++ << 24;
|
|
len -= 4;
|
|
|
|
crc ^= data;
|
|
|
|
for (i = 0; i < 32; i++)
|
|
if (crc & CRC_MSBMASK)
|
|
crc = (crc << 1) ^ CRCPOLY_BE;
|
|
else
|
|
crc = (crc << 1);
|
|
}
|
|
return crc;
|
|
}
|
|
|
|
stm32_err_t stm32_crc_wrapper(const stm32_t *stm, uint32_t address,
|
|
uint32_t length, uint32_t *crc)
|
|
{
|
|
uint8_t buf[256];
|
|
uint32_t start, total_len, len, current_crc;
|
|
|
|
if ((address & 0x3) || (length & 0x3)) {
|
|
fprintf(stderr, "Start and end addresses must be 4 byte aligned\n");
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
|
|
if (stm->cmd->crc != STM32_CMD_ERR)
|
|
return stm32_crc_memory(stm, address, length, crc);
|
|
|
|
start = address;
|
|
total_len = length;
|
|
current_crc = CRC_INIT_VALUE;
|
|
while (length) {
|
|
len = length > 256 ? 256 : length;
|
|
if (stm32_read_memory(stm, address, buf, len) != STM32_ERR_OK) {
|
|
fprintf(stderr,
|
|
"Failed to read memory at address 0x%08x, target write-protected?\n",
|
|
address);
|
|
return STM32_ERR_UNKNOWN;
|
|
}
|
|
current_crc = stm32_sw_crc(current_crc, buf, len);
|
|
length -= len;
|
|
address += len;
|
|
|
|
fprintf(stderr,
|
|
"\rCRC address 0x%08x (%.2f%%) ",
|
|
address,
|
|
(100.0f / (float)total_len) * (float)(address - start)
|
|
);
|
|
fflush(stderr);
|
|
}
|
|
fprintf(stderr, "Done.\n");
|
|
*crc = current_crc;
|
|
return STM32_ERR_OK;
|
|
}
|